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Abstract. We study a model of associative memory based on a neural network with small-world structure.
The efficacy of the network to retrieve one of the stored patterns exhibits a phase transition at a finite value
of the disorder. The more ordered networks are unable to recover the patterns, and are always attracted
to non-symmetric mixture states. Besides, for a range of the number of stored patterns, the efficacy has
a maximum at an intermediate value of the disorder. We also give a statistical characterization of the
spurious attractors for all values of the disorder of the network.

PACS. 84.35.+i Neural networks — 89.75.Hc Networks and genealogical trees — 87.18.5Sn Neural networks

1 Small-world neural networks

Artificial neural networks have been used as a model for
associative memory since the 80’s, and a considerable a-
mount of work has been made in the field [1-3]. Most of
this work regards both the simulation and the theory of
completely connected networks, as well as networks with a
random dilution of the connectivity. It is known that par-
ticular prescriptions for the determination of the synap-
tic weights enable these systems to successfully retrieve a
pattern out of a set of memorized ones. This behavior is
observed in the system up to a certain value of the num-
ber of stored patterns, beyond which the network becomes
unable to retrieve any of them. For reasons of simplicity
of the models and their analytical tractability, complex
architectures of the networks, more akin to those found in
biological neural systems, have been largely left out of the
theoretical analysis. Fortunately, since a few years ago, a
class of models that has come to be known as “complex
networks” began to be thoroughly studied. Complex net-
works seem more compatible with the geometrical prop-
erties of many biological and social phenomena than reg-
ular lattices, random networks, or completely connected
systems [4-7]. Already in the seminal work of Watts and
Strogatz [4], whose small-world model combines proper-
ties of regular and random networks, it was observed that
the neural system of the nematode C. elegans shares topo-
logical properties with this model networks. Very recently,
a number of works have begun to explore the relevance of
a complex architecture in the behavior of neural networks
as memory devices. The stability of the memorized pat-
terns, as well as the capacity to retrieve a pattern from a
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state affected by errors, has been studied by McGraw et al.
in reference [8], for a variety of small-world and scale-free
networks. The scale-free topology has been further stud-
ied by Torres et al. [9], who found that these networks
perform better than random ones of the same dilution
or connectivity. Other recent contributions can be found
in [10-12]. In particular, reference [11] by Bohland et al.
explores the same model we describe in he present work.
Our results support theirs and provide a characterization
of the transition and the nature of the attractors.

In this paper we study a neural network built upon the
Watts-Strogatz model for small worlds. The model inter-
polates between regular and random networks by means
of a parameter p, which characterizes the disorder of the
network. The construction, as formulated in reference [4],
begins with a one-dimensional regular lattice of N nodes,
each one linked to its K nearest neighbors to the right and
to the left, and with periodic boundary conditions. With
probability p, each one of the right-pointing links, of every
node, is rewired to a randomly chosen node in the net-
work. Self connections and repeated connections are not
allowed. The result is a disordered network, defined by
the set N, K, p, that lies between a regular lattice (p = 0)
and a random graph (p = 1). A wide range of these net-
works displays high local clusterization and short average
distance between nodes, as many real complex networks.
They can be defined by the connectivity matriz c;;, where
cij = 1 if there is a link between nodes 7 and j, and ¢;; =0
otherwise. This matrix establishes the synaptic connec-
tions between neurons, differing from the traditional Hop-
field model, where the network is completely connected
and the connectivity matrix is ¢;; = 1, Vi,j. It is also
different from the traditional diluted disordered networks,
which have also been considered in the literature, in which
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randomly chosen elements in the connectivity matrix are
set to zero.

The biological neuron carries out an operation on the
inputs provided by other neurons, and it produces an out-
put. A transformation of this continuous output into a
binary variable makes it possible to formulate a simplified
model in which the neurons are logical elements. In this
binary representation, the state of each neuron is charac-
terized by a single variable s;. This variable can take two
values representing the active and the inactive state,

1 if the neuron is active,
S; = (1)

—1 if the neuron is inactive.

We assume that some patterns have been stored in the
network by a learning process, which we do not deal with.
The stored—or memorized—patterns are represented by
network states £#, where p =1, ..., M labels the different
patterns and M is their number. As usual, the patterns
are generated at random, assigning with equal probability
1/2 the values &' = £1. The patterns are uncorrelated
and thus orthogonal in large networks:

1 N
N Zfzﬂg: - 5#1/' (2)
=1

The state of the neurons is updated asynchronously, as
in Glauber dynamics. At each simulation step, a neuron
is chosen at random, and its new state is determined by
the local field:

N
hi :Zwij S5 (3)
=1

according to:
s; = sign (hy). (4)

The synaptic weights w;; of the connections are given
by Hebb’s rule, restricted to the synapsis actually present
in the network, as given by the connectivity matrix:

1
wij = Z cij&; &f (5)

for i,5 = 1,..., N. Note that as the network model does
not allow self connections the diagonal matrix elements
are null. By definition, the synaptic matrix is symmetric.

In the model, “memory” is the capacity of the network
to retrieve one of the stored patterns from an arbitrary
initial condition. The retrieval of a stored or memorized
pattern is the convergence of the system to that pattern
by means of the dynamics.

Besides the dynamics prescribed by equations (3, 4),
it is possible to consider a network is subject to thermal
fluctuations [1,2]. In this work we will only consider the
effects of a small amount of additive noise to verify the
robustness of our results. A full discussion of the effect
of a finite temperature in the dynamics will be left for
future work. The stochastic asynchronous update, though,
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prevents the system from having limit cycles, and the only
attractors are fixed points.

In a fully connected network, the stored patterns &
would be, by construction of the synaptic weights (5),
fixed points of the dynamics due to the orthogonality
condition. Diluted networks, nevertheless, are also able to
hold memorized patterns as long as, for a given number of
patterns M, the connectivity is large enough. This holds
for some classes of networks, such as random, symmetric
and strongly diluted networks, as shown by Derrida et al.
in [13], and also for symmetric ones with finite dilution, as
demonstrated recently by Wemmenhove et al. [10]. Since
the networks of our model have a topology which is not
completely random we have verified, by direct inspection,
that the memorized patterns are indeed fixed points of
the dynamics for the dilution and the storage values used.
Remarkably, the value of the disorder plays little or no
role in the connectivity necessary to have the patterns
as fixed points with statistical certainty: there is a sharp
transition, at the same value of K for all p, above which
the probability that a stored pattern is a fixed point is 1
(and below, it is 0). All our simulations are carried out in
a region well beyond this critical value, where the stored
patterns are fixed points. Of course, the fact that a pattern
is a fixed point does not ensure that it is an attractor of
the dynamical system, since it basin might be negligible or
null. If the network is to perform well as a memory model,
the basin of attraction of the memorized patterns has to
occupy a significant volume in phase space, and we know
that this is the case for completely random networks. It
is our aim to explore how the topology of the network af-
fects this matters, and eventually how the stored patterns
lose there attraction as a function of the disorder param-
eter. As in the fully connected and the randomly diluted
models, the reversed patterns (—¢;), as well as a wealth
of symmetric and asymmetric mixtures of patterns (also
called spurious states), are also equilibria of the system
and play a significant role in its behavior as a memory
device.

2 Effect of the disordered topology

We have performed extensive numerical simulations of the
system, starting from a random unbiased initial condi-
tion!. After a transient, a fixed point is reached, whence
no further changes occur to any neuron. In order to mea-
sure the efficacy of the network to recall a number M of
stored random patterns, we define an efficacy ¢ as the
fraction of realizations in which one of the stored patterns
(or one of the reversed ones, —¢) is perfectly retrieved.
In Figure 1 we plot the order parameter ¢ as a function
of the disorder parameter p. The different curves corre-
spond to different numbers of stored patterns, M =1, 2,
5, 10, and 20. For this plot we have used N = 5000 and

! The reason to use a random initial condition is to achieve a
good characterization of the whole phase space. In applications,
it is usual to set the initial state at one of the stored patterns,
affected by a variable amount of errors.
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Fig. 1. Efficacy to retrieve a memorized pattern, ¢, as a func-
tion of the disorder p. The curves correspond to different num-
ber of stored patterns: (squares) M = 1, (circles) M = 2,
(up triangles) M = 5, (down triangles) M = 10, (diamonds)
M = 20. Inset: The efficacy as a function of the number of
stored patterns, at p = 1. Simulation parameters: N = 5000,
K =100, 10* realizations per point.

K = 100. Averages have been taken over 10 realizations.
For each realization we use different patterns, as well as
different initial conditions. Figure 1 shows that on highly
ordered networks the system does not retrieve any stored
pattern (as already observed in [11]). Then there is a tran-
sition as the disorder parameter p grows, and above some
critical value of p, patterns are retrieved as fixed points
yielding ¢ > 0. For M = 1 and M = 2, ¢ = 1 above
p =~ 0.4. But for M > 2 we find that ¢ does not grow
monotonically with p. Instead, it decays as p grows after
reaching a maximum value. This surprising non monotonic
behavior with the disorder parameter p has been observed
before in a problem of biased diffusion [14], and in an Ising
model [15], both with asymmetric interactions.

In the inset of Figure 1 we plot ¢ vs. M for a disor-
dered network with p = 1. As the number of stored pat-
terns M grows, the network is not able to retrieve them.
The curve also shows a non monotonic behavior with M.
The transition as the number of stored patterns grows
has already been studied in diluted disordered networks
(Ref. [1], Chap. 7). It is known that random dilution re-
duces capacity of a neural network (approximately 0.138 N
for a fully connected network [1]) in a way which is pro-
portional to the fraction of available connections. For our
system (which is very diluted) the transition, then, takes
place at M, ~ 0.138(K/N)N = 13.8, roughly as observed.
Nevertheless, we are mostly interested in the behavior of
the system regarding the different topologies characterized
by p. The fact that the transition between the memory
phase and the spin-glass phase occurs at a finite value of
the disorder parameter is very interesting, since a few dy-
namical systems based on small-world architectures show
it [16-18]. This occurs in spite of the fact that the average
distance between nodes, the main geometrical property of
the Watts-Strogatz model, has a transition at p = 0 [19].
Indeed, for several Ising-like systems, which bear some
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Fig. 2. Efficacy ¢ as a function of the disorder parameter p,
for systems of different sizes (as shown in the legend), and
K = 100. The number of stored patterns is M = 5, with
10* realizations per point. Inset: The same curves, scaled with
the system size according to equation (6), collapse to a single
curve ¢, with p. = 0.333 and a = 0.2.

similarities with artificial neural networks, a phase transi-
tion occurs at p = 0 [19-22].

In order to understand the finite size effects in the
system, and the behavior of the transition in the limit of
an infinite system, we have made simulations on systems
of different sizes. We have chosen to keep the connectivity
parameter of the model constant through all the results we
show, K = 100. In this regard, our results correspond to a
neural network characterized by certain properties at the
local level, for example the average connectivity of each
neuron (2K in our systems). Our finite size analysis shows
the behavior of these networks in systems of increasing size
N and in the limit N — oo.

The plot of ¢ vs. p for different values of N is shown
in Figure 2. For this curves we have set K = 100 and
M = 5, averaging over 10* independent realizations. As
seen in the figure, all the curves seem to cross for the same
value of the disorder parameter p = p. ~ 0.333. Observe
that the small-world transition, in a finite network, occurs
at p~ 1/N (and at p = 0 for an infinite network), so the
present transition occurs clearly at a finite value of the
disorder parameter.

Based on numerical evidence, we find that the depen-
dence of the efficacy on the system size can be built into
a scaling function:

¢(p,N)=2[(p—pe)N]. (6)

At the point of crossing of the curves, ¢ becomes indepen-
dent of N.

Since the order parameter is not singular at the transi-
tion, we can expand @ as a Taylor series around the critical
control parameter p.:

@ (p, N) = &(0) +&'(0) (p — pc) N, (7)
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to first order in (p — p.). Defining ¢ = ¢ — ¢(p.) and
P =p — pc We can write:

9%

V)| =#ON"

p=0

(8)

Plotting on a log-log scale the derivative 0¢/dp|o
vs. N, we obtain the exponent o as the slope of the
line. Using data from N = 2 x 103 to N = 10°, we find
a =0.234+0.04, and ¢'(0) = 0.096 & 0.016. In the inset of
Figure 2, we plot the re-scaled curves for different N. The
best data collapse is obtained with a = 0.2, compatible
with the above result.

Except in the relatively narrow range of p where p ~ 1,
the system fails to retrieve any stored pattern in a signif-
icant fraction of the realizations: almost always when the
network is very ordered, down to p = 0, and about 12%
of the times when the network is very disordered, up to
p = 1. What happens in the phase space as the network
architecture changes? What happens to the trajectories,
and why are the patterns missed? It seems natural to ex-
pect that the energy landscape is different for p = 0 than
for p = 1. To address this problem we turn our attention
to the properties of the overlaps of the equilibrium state
with the memorized patterns. Suppose that after a tran-
sient the network has reached a fixed point (. We define
the overlap of this fixed point with the patterns as

N
D &G
i=1

Note that if the fixed point is a stored pattern, { = £”,
then 0¥ = 1. In order to determine the type of fixed points
that are reached when the network misses the patterns,
we measure the overlap 6* of the fixed point with the
stored patterns £#. The probability distribution P(6) of
these overlaps gives information on the kind of mixture
that the fixed point is. Figure 3 shows the overlap dis-
tributions for several levels of disorder in the network. In
this plots, N = 2000, K = 100, M = 5 and 10° real-
izations are used per curve. For the three higher values
of p, the distributions have a high peak at § = 1, which
is not shown for reasons of scale. This peak corresponds
to the realizations that end up in a pattern, which hap-
pens frequently whenever p > p., as seen in Figure 2.
The somewhat broader peak that these distributions have
at low values of # has the same origin, since the overlaps
with the other M —1 patterns have a low value whenever a
pattern is reached. Indeed, the overlap of two uncorrelated
states has a mean value 6y = 0.022. In the intermediate
range of 6, the distribution presents a broad bump around
6 = 1/2. This corresponds to symmetric mixtures of the
patterns, although the width of this bump suggests that
asymmetric mixtures are present as well. In particular, the
smaller peak present around 6 =~ 0.35 for the completely
random network, corresponds to asymmetric mixtures. In
contrast with these three cases—at and above the critical
point—for ordered networks with p = 0 the overlap dis-
tribution is broad and does not have peak at 6 = 1. It
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Fig. 3. Distribution of overlaps P(6) after a fixed point has
been achieved, between the state of the system and all stored
patterns. Each curve corresponds to a value of p, as shown in
the legend, typical of the different memory behaviors observed.
A large peak at § = 1 (perfect retrieval of a pattern) is not
shown for reasons of scale (see discussion in the text).

has a maximum at § = 0 and decays as 6 grows, but large
overlaps are observed in some realizations as the distribu-
tion shows. This is the only curve for which the complete
distribution is shown. As the distribution suggests, the
fixed points of these systems consist of very asymmetric
mixtures.

The previous analysis unveiled the structure of the
phase space and the difference between the low and the
high p regimes. Still, what is the reason for the catas-
trophic loss of memory below the critical value of disor-
der? We have found that, for low values of disorder, the
fixed points retrieve scattered pieces of several stored pat-
terns. These fixed points consist of localized regions that
overlap with different patterns. Indeed, at p = 0, the net-
work is topologically very clusterized, and there exist local
neighborhoods relatively isolated from each other. These
neighborhoods begin to disappear by the action of the
shortcuts provided by the random rewiring at higher val-
ues of p, until the whole system becomes essentially a sin-
gle neighborhood. Then, at p = 0, from an arbitrary initial
condition, different regions of the network eventually align
themselves with different patterns. The final result is a
completely asymmetric mixture, impossible to classify due
to the arbitrariness of its origin and nature. These are the
states that the broad distribution of overlaps describes, in
Figure 3, for p = 0. The existence of asymmetric mixtures
as attractors in this kind of associative memory model
have been observed before (see for example [1], Chap. 4).
But since they are very rare in the completely random
or in the completely connected networks, they are very
difficult to observe. In the present context, however, they
play an essential role in the destruction of the ability of
the system to retrieve the patterns.

In order to quantify this, we proceed to define a corre-
lation measure that provides a clear picture of the situa-
tion. We introduce the difference of the fixed point ¢ with
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Fig. 4. Distribution of the local correlation that characterizes
the level of alignment with a stored pattern (Eq. (13)). System
parameters: N = 2000, K = 100, 10° realizations per curve.
A peak at C' = 1, shared by the three curves with the higher
values of p, is not shown for reasons of scale (see discussion in
the text).
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Then we define a local magnetization for the difference
vector d*, for every node i:

B
my =

1
d! d’ 11
1 + k/’l 1 + Z 71 ( )

JEVi

where V; is the set of neighbors of node i. The local mag-
netization m! measures the local alignment with the pat-
tern p or its reversed companion. The maximum value
mf' =1 arises when d/ = d!' Vj € V;. The presence of
connected domains where the fixed point  overlaps with
the pattern £* should be detected as short range corre-
lations between the local magnetizations. The correlation
between the local magnetizations of the difference vector
with the pattern p is then defined as:

C“—ii lZm“m“
_Nz'=1 k. g

' jevi
As we intend to capture the existence of correlations in
the difference with patterns that appear in the mixture
that makes up the fixed point {, we define the maximum
correlation

(12)

C = max {C*}. (13)
H

Figure 4 presents the probability distribution P(C) for
different levels of network disorder. Each distribution is
constructed over 108 realizations of N = 2000 networks,
with connectivity K = 100. For p = 0 we observe a broad
peak centered around C' ~ 0.3. This is a quantitative mea-
sure of the occurrence of correlations on ordered networks,
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as we pointed out. For the other values of p considered in
the figure, the distribution has a sharp peak at C' = 1
which we have not shown for reasons of scale, correspond-
ing to the fixed points that coincide with a pattern, and
consequently give the highest possible value of the correla-
tion. Besides this peak, the most disordered systems show
a narrow peak at C =~ 0.25, and the curve for p = 1 also
a smaller one at C' = 0.15. These two peaks correspond
to symmetric and asymmetric mixtures, respectively. For
p = 0.333, very close to the critical point, the distribution
presents a very small bump at C ~ 0.3. It is easy to see,
form the extended region of P(C) in the curve for p = 0,
that the mixtures are characterized by higher local corre-
lation in the ordered system than in the disordered ones.

3 Discussion

We have studied a model of associative memory based
on neural networks with a complex topology. This kind
of connectivity can be considered as more similar to the
biological networks than the completely connected or ran-
domly diluted networks. Many of the general features of
these systems are preserved: the network is able to retrieve
a memorized pattern, up to a saturation. Besides, we have
found a critical dependence of the efficacy of retrieval on
the disorder parameter of the network: a collapse of the
memory capability takes place at a finite value of the dis-
order parameter. The optimal performance of the system
occurs at an intermediate value of the disorder, just above
the critical value. This enhanced performance occurs far
away from the region of p = 1, which is equivalent to the
well known models of completely connected or randomly
connected neural networks. We have characterized the dif-
ferent phases by the properties of the mixture states, that
prevent the system to reach one of the memorized states.

We have understood the failure of the more ordered
networks to retrieve a stored pattern due to the partition
of the system into arbitrary neighborhoods aligned with
more than one pattern. This is something that the disor-
dered networks cannot do, and in fact the distributions of
the overlaps and of the correlations quantify this effect.
It does not escape us that we cannot, at this stage, pro-
vide an explanation of the enhanced performance of the
intermediate region.

We have checked the robustness of our results with re-
spect to a small amount of noise in the dynamics. This
has been implemented by flipping, with probability €, one
neuron at random after each deterministic step. For val-
ues of € up to 0.01, the results are indistinguishable from
the noiseless system. For greater values of € the system
becomes more and more ineffective to retrieve a pattern,
but the general form of the curves ¢(p) is preserved for
the whole range of p. A systematic analysis of the problem
of a truly noisy network, characterized by a temperature,
remains to be done.
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